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Importance of Third Virial Coefficients for
Representing the Gaseous Phase Based on Measuring
PVT-Properties of 1,1,1-Trifluoroethane (R143a)1

K. Ichikura,2 Y. Kano,2 and H. Sato3,4

For a reliable derivation of the thermodynamic properties in the gaseous
phase from thermodynamic equations of state, it has been pointed out
that third virial coefficients significantly affect calculations of heat capacities.
Among existing equations of state including internationally accepted equa-
tions, there is a large discrepancy, sometimes more than 5%, in calculated
heat-capacity values near saturation. Two different approaches have been con-
ducted in addressing this problem. One is for providing the third virial
coefficient from intermolecular-potential models based on speed-of-sound
measurements with a spherical resonator, and another is for confirming the
effect of the third virial coefficient on density values near saturation by
measuring the density precisely with a magnetic suspension densimeter. This
report is focused on the latter case, i.e., precise measurements of density
for 1,1,1-trifluoroethane, R143a, near saturation and some important evidence
for the necessity of considering third virial coefficients for calculating reliable
thermodynamic properties in the gaseous phase.
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1. INTRODUCTION

It was pointed out by Narukawa et al. [1] from our group in 2000 that
a large discrepancy (sometimes more than 5%) exists among calculated
values of the specific heat capacity in the gaseous phase near saturation
from existing equations of state developed for hydrofluorocarbons. Our
group has also pointed out that the behavior of second and third virial
coefficients may affect the discrepancy. Especially the third virial coeffi-
cients derived from existing equations of state show different behavior
at low temperatures. Many efforts have been made experimentally and
theoretically to determine the virial coefficients in the past. But no one
knows the correct quantitative third virial coefficient or the process to
determine it from theoretical or experimental information. Two different
methods for determining the third virial coefficient are investigated by our
group: a method using intermolecular-potential models with four parame-
ters including a temperature-correction parameter determined on the basis
of speed-of-sound measurements by Kojima [2], as well as by others [3–5],
and a method to determine it from precise PVT measurements in the
vicinity of saturation.

We precisely measured PVT-properties of R143a in the region near
saturation for the gaseous phase with a magnetic suspension densimeter
developed in the laboratory of Wagner and his co-workers [6]. On the
basis of our measurements near saturation, we showed that most of the
existing equations of state do not represent the measurements well. There
are obviously systematic deviations in the region near saturation from
existing equations of state. The reason is that they have been developed
without the experimental data measured in the vicinity of saturation. First,
a virial equation of state based on our PVT measurements will be intro-
duced. The virial equation of state enables one to represent thermody-
namic property values including density, speed of sound, and specific heat
capacity in the gaseous phase including the region near saturation. Sec-
ond, the importance of the third virial coefficient in representing thermo-
dynamic surfaces in the gaseous phase especially near saturation will be
demonstrated in this paper.

2. EXPERIMENTAL APPARATUS

Two densimeters with a magnetic suspension balance are used for
density measurements. The details of the densimeter were introduced by
Klimeck et al. [6]. The apparatus (shown in Fig. 1) was assembled by our
group for measuring PVT properties of fluids including those near satura-
tion in both the liquid and gaseous phases. This apparatus consists of a
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Fig. 1. Experimental apparatus. (A) Densimeter with magnetic suspension bal-
ance for liquid, (B) densimeter with magnetic suspension balance for gas, (C)
control box for [A], (D) control box for [B], (E) differential pressure detec-
tor, (F) circuit tester, (G) quartz pressure transducer, (H) pressure computer, (I)
dead weight pressure gauge, (J) nitrogen gas bomb, (K) variable volume ves-
sel with metallic bellows, (L) vacuum pump, (M) argon gas bomb, (N) sample
cylinder, (O) standard platinum resistance thermometer, (P) thermometer bridge,
(Q) PID controller, (R) thyristor regulator, (S) sub-heater, (T) main heater, (U)
stirrer, (V1–V11) valves, (W) sub-cooler, (X) main cooler, (Y) thermostatic bath,
and (Z) quartz pressure transducer.

temperature control/measurement system, a pressure control/measurement
system, and a density measurement system.

We recently introduced a quartz digital pressure gauge (Z) covered
with a container as shown in Fig. 1. The quartz digital pressure gauge was
calibrated by using a dead-weight pressure gauge (Model 5201, DH Instru-
ments). Pressure was indirectly measured through a diaphragm-type differ-
ential-pressure detector (E). The uncertainty of pressure measurements
is improved from 1.20 kPa to 0.82 kPa by introducing the new pressure
gauge. The temperature is measured by a standard platinum resistance
thermometer. The thermometer was calibrated on the basis of IPTS-68,
and the temperature values were processed in accordance with ITS-90. It
was installed at the middle level between two cells of the densimeters of A
and B in the thermostatic bath. A density-measurement system is a set of
two magnetic suspension densimeters.
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The combined standard uncertainties of temperature and pressure
measurements are estimated to be not greater than 10 mK and 0.82 kPa,
respectively. The uncertainty of the density measurement is estimated to
be not greater than 0.03% + 0.005 kg · m−3 in density. The sample purity
of R143a was 99.99 mass% according to calibration by the manufac-
turer.

3. EXPERIMENTAL RESULTS

In order to confirm the reliability of the apparatus, density measure-
ments for Ar and CO2 were carried out. We have 48 PVT-properties of
Ar and 40 PVT-properties of CO2 in the range of temperature from 283
to 313 K and of pressure from 500 kPa to 3 MPa. All of our measurements
for Ar along four isotherms agree with the reliable equation of state devel-
oped by Tegeler et al. [7] within the uncertainty of the density measure-
ments. The same reliability was confirmed for CO2.

After confirming the reliability, we measured 102 PVT-properties of
R143a in the range of temperature from 283 to 313 K and of pressure
from 150 kPa to 1.8 MPa. The actual data values will be reported in Ref.
8. Figure 2 shows deviations of the selected PVT-properties from the
equation of state developed by Lemmon and Jacobsen [9], which is an
internationally accepted equation for R143a recommended by the Inter-
national Energy Agency (IEA). Most of our measurements are well rep-
resented, within ±0.1%, which is the uncertainty of the equation of state.
Our measurements are compared with four different equations of state in
Fig. 3. The baseline is each equation of state in Fig. 3. Those equations
of state were developed by Lemmon and Jacobsen [9], Li et al. [10], Span
[11], and Outcalt and McLinden [12]. As shown in Fig. 3, the deviations
of our density measurements show systematic trends when approaching
close to saturation at higher pressures. Although the deviations of the data
compared to the equation of state developed by Lemmon and Jacobsen [9]
are not significant, other equations of state do not represent our measure-
ments near saturation well.

4. VIRIAL EQUATION OF STATE

We measured 102 PVT-properties of R143a in the region near satu-
ration along four isotherms. Based on our PVT measurements, we fitted
parameters for the density-explicit virial equation of state,

Z = P

ρRT
=1+B (T )ρ +C (T )ρ2, (1)
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Fig. 2. Relative density deviations of the selected PVT measurements from the
equation of state developed by Lemmon and Jacobsen [9]. •, This work; �, de
Vries; �, Zhang et al.; ♦, Giuliani et al.; ©, Fujiwara and Piao; ×, Weber et al.

-0.4

-0.2

0

0.2

0.4

0 500 1000 1500 2000
P,  kPa

10
0 

(r
 e

xp
–r

 c
al

)/
r c

al
, % 283.15 K

293.15 K
303.15 K

313.15 K

283.15 K
293.15 K 303.15 K

313.15 K

Fig. 3. Relative density deviations of the measurements near saturation in
this work from existing equations of state for R143a. ©, Lemmon and Jac-
obsen same as shown in Fig. 2; �, Li et al.; �, Span et al.; ×, Outcalt and
McLinden.

where Z denotes the compressibility factor; P is the pressure in kPa; T

is the temperature in K; ρ is the density in kg · m−3; and R = 8.314472
J· mol−1· K−1, the universal gas constant. The second, B(T), and third,
C(T), virial coefficients are given by the following functions of tempera-
ture:

B (T )=b1 +b2T
−1
r +b3exp(T −1

r ), (2)

C (T )= c1 + c2T
−α
r + c3T

−β
r . (3)
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In Eqs. (2) and (3), Tr is the reduced temperature defined as T/Tc,
whereas b1 to b3, c1 to c3, α, and β are numerical coefficients. We adopted
the critical temperature measured by Aoyama et al. [13]. The numerical
coefficients and the critical temperature for Eqs. (2) and (3) are given in
Table I. These functional forms have been used in our group since 1995
when Zhang et al. [14] proposed them.

Although the virial equation of state represents the measurements
well in the range where our data exist, it becomes less reliable in the region
where it is far from our measurements. In order to make it reliable even in
the extended range from our measurements, we tried to introduce theoret-
ical second and third virial coefficients deduced from the following cluster
integrals of the intermolecular potential energy,

B (T )=−NA

2V

∫ ∫
f12dr1dr2, (4)

C (T )=−N2
A

3V

∫ ∫ ∫
f12f23f31dr1dr2dr3, (5)

where NA is Avogadro’s number, V is the molar volume, and fij , introduced
by Mayer and his coworkers [15] due to Hirschfelder et al. [16], is defined as

fij = exp
(

− uij

κBT

)
−1, (6)

uij is an intermolecular potential energy between molecules i and j , which
depends on their separation distance of rk, and κB(=R/NA) is the Boltz-
mann constant. The details of the intermolecular potential model are also
reported by Kojima [2] and by Yasui et al. [5] from our group. Kojima
pointed out that it is effective for calculating virial coefficients from an

Table I. Numerical Coefficients and Critical Tem-
perature of Eqs. (2) and (3)

b1 5.71751×10−3

b2 −9.26707×10−5

b3 −3.28792×10−3

c1 −3.22403×10−6

c2 9.06716×10−6

c3 −1.45994×10−6

α 3.0
β 7.0
Tc (K) 345.86
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intermolecular potential model with the aid of introducing a temperature-
correction parameter of τ as (T − τ ) instead of using temperature T . We
also applied τ in developing a new virial equation. For the intermolecular
potential model, we selected the Stockmayer potential that has a dipole-
dipole interaction term in addition to the Lennard-Jones potential. B(T )

and C(T ) are theoretically derived from the Stockmayer potential model
by the following relations [17]:

B (T )=b0

(
4

T ∗

)1/4 [
Γ

(
3
4

)
− 1

4

∞∑
n=1

n/2∑
l=0

2nGl

n!

(
n

2l

)

×Γ

(
2n−2l −1

4

)
t∗2lT ∗−(n+l)/2

]
, (7)

Gl = 1
8π

∫ 2π

0

∫ π

0

∫ π

0

[
g

(
θi, θj , φij

)]2l sin θi sin θidθidθj dφij

= 1
1+2l

l∑
m=0

(
l

m

)
3m

1+2m
, (8)

t∗ = µiµj

2
√

2εij σ
3
ij

, (9)

T ∗ = κ (T − τ)

ε
, (10)

b0 = 2
3
πNAσ 3, (11)

C (T )=b2
0


 ∞∑

j=0

c(j)T ∗−(j+1)/2+3
2
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n=2

n∑
m=2

2n

n!

(
n

m

)
t∗m

T ∗(n/2+m/4+1/2)
Q

(j)
mn


 .

(12)

The numerical parameters of Eqs. (7)–(12) were determined on the basis
of our measurements and are given in Table II.

Table II. Numerical Parameters of Eqs. (7)–(12)

σ(Å) 5.15049
ε/κ(K) 194.82
t∗ 0.47399
τ(K) 53.620
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Fig. 4. Relative density deviations of the selected PVT measurements from the
virial equation, having an empirical background, Eqs. (2) and (3). •, This work;
�, de Vries; �, Zhang et al.; ♦, Giuliani et al.; ©, Fujiwara and Piao; ×, Weber
et al.
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Fig. 5. Relative density deviations of the selected PVT measurements from the
virial equation having a theoretical background, Eqs. (7)–(12). •, This work; �, de
Vries; �, Zhang et al.; ♦, Giuliani et al.; ©, Fujiwara and Piao; ×, Weber et al.

Figures 4 and 5 show the deviations of the PVT properties from the
virial equation of state developed in this study. Both virial equations of
state were developed on the basis of a common database, our 102 precise
measurements for R143a. It is obvious that the deviations of our measure-
ments from both equations do not exceed ±0.2% and that most of the
data are represented within ±0.1%. Both equations of state can represent
input data with almost the same reproducibility in the region near satu-
ration. For other measurements [18–22], the theoretical-background (TB)
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equation consisting of Eqs. (7)–(12) reproduces the data better than does
the empirical-background (EB) equation which consists of Eqs. (2) and
(3). The TB-equation represents the measurements by de Vries [18] which
are reliable within ±0.2% in the range of pressures below 1.5 MPa and
densities below 70 kg · m−3, while the deviations from the EB equation
exceed 0.4% at higher pressures beyond 1 MPa.

The deviations of accurate speed-of-sound measurements in the gas-
eous phase from the two virial equations of state are shown in Figs. 6 and
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Fig. 6. Relative deviations of the selected speed-of-sound measurements from the empiri-
cal-background (EB) virial equation, Eqs. (2) and (3). �, Gillis et al.; •, Ogawa et al.
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Fig. 7. Relative deviations of the selected speed-of-sound measurements from the theoret-
ical-background (TB) virial equation, Eqs. (7)–(12). �, Gillis et al.; •, Ogawa et al.
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7. The speed-of-sound measurements were reported by Ogawa et al. [23] and
Gillis et al. [24]. The TB-equation also represents the measurements better
than does the EB-equation as shown in Figs. 6 and 7.

Thermodynamic properties derived from the TB-equation are reliable in
the gaseous phase, at least in the region where the measured data are available
as introduced above. In addition, the equation should be reliable in the gas-
eous phase including the region where no measured data are available because
it behaves in the same manner as the theoretical behavior determined from
the intermolecular potential model. In the following section, reliabilities of the
derived specific heats and the virial coefficients will be discussed.

5. IMPORTANCE OF THIRD VIRIAL COEFFICIENT

The isochoric, cv, and isobaric heat-capacity, cp, values derived from
different equations of state are compared along some isobars in Figs. 8
and 9. Vapor pressures and ideal-gas heat capacities, c0

p, for calculating cv

and cp of the saturated vapor are calculated from a vapor–pressure equa-
tion developed by Matsuda et al. [25] and from a c0

p equation reported by
Sato et al. [26]. As shown in Figs. 8 and 9, the isobaric lines calculated
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Fig. 8. Isochoric heat capacities, cv , along different isobars. Thick solid line,
the TB-virial equation of state; thin solid line, the EB-virial equation of state;
dashed line, equation of state by Lemmon and Jacobsen.
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the TB-virial equation of state; thin solid line, the EB-virial equation of state;
dashed line,equation of state by Lemmon and Jacobsen; •, Yasumoto; �,
Takei et al.; �, Mukoyama; �, Nakashima.

from the equation of state by Lemmon and Jacobsen have steeper curva-
ture than those from our virial equations of state. The greatest difference
in the behavior of heat capacities appears at saturation. In the case of the
isobaric specific heat, the measurements by Mukoyama [27], Nakashima
[28], Takei et al. [29], and Yasumoto [30] are available which are compared
with the equations of state in Fig. 9. Figure 9 shows that our virial equa-
tions of state represent all of the measurements better than does the equa-
tion of state by Lemmon and Jacobsen.

As mentioned previously, our group has consistently pointed out that
there are large differences among the specific-heat values derived from exist-
ing equations of state in the region near saturation and that the behavior
of the third virial coefficients may affect the difference. Figures 10 and 11
show the temperature dependence of the second and third virial coefficients,
respectively. The data plotted in these figures are theoretically calculated
from the Stockmayer potential model by Yokozeki et al. [31]. The behavior
is only qualitative since the second and third virial coefficients do not repro-
duce the physical thermodynamic value with appropriate reliability. Regard-
ing the second virial coefficient, all models including those by Yokozeki
et al. agree well with each other except at lower temperatures where only
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Fig. 10. Temperature dependence of the second virial coefficients of equa-
tions of state. Thick solid line, the TB-virial equation of state; thin solid line,
the EB-virial equation of state; dashed line, equation of state by Lemmon and
Jacobsen; ©, calculation from Stockmayer potential model by Yokozeki et al.

the equation of state by Lemmon and Jacobsen agrees well with the data
by Yokozeki et al. Although the difference among second virial coefficients
increases at lower temperatures, the specific-heat values derived from these
three equations of state are getting closer to each other at lower tempera-
tures as shown in Fig. 8.

Regarding the third virial coefficient, there are also large differences
at lower temperatures among the different thermodynamic models. Our
third virial coefficients both in TB- and EB-virial equations of state have
the maximum around 250 K, while that from the equation of state by
Lemmon and Jacobsen continues to rise as the temperature is reduced.

The importance of obtaining accurate third virial coefficients is
because they strongly affect the thermodynamic properties in the region
near saturation, even at higher temperatures as shown in Figs. 8 and 9 for
the specific heats.

For ascertaining the role of the third virial coefficients, a virial equa-
tion of state having only the second virial coefficient was developed. Devi-
ations of our PVT measurements from the two different virial equations
of state are simultaneously shown in Fig. 12; circles show deviations from
the equation having both second and third virial coefficients with the
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Fig. 12. Relative deviations of our PVT measurements from the virial equa-
tion developed. ©, virial equation of Eqs.(7) – (11); �, virial equation having
only second virial coefficient in Eq. (1).

numerical parameters of Table II, and triangles show deviations from the
virial equation of state having only second virial coefficients with the
numerical parameters of Table III. As shown in Fig. 12, the virial equation
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Table III. Numerical Parameters of Eqs. (7)–(11)
for Case of Equation Having Only Second Virial

Coefficients

σ(Å) 7.93008
ε/κ(K) 99.910
t∗ 1.1793
τ(K) −19.925

of state using only the second virial coefficient does not represent our
measurements well, and the deviations of our density measurements sys-
tematically deviate from the equation. The deviations increase systemati-
cally close to saturation at higher pressures.

In addition, comparisons of the isochoric, cv, and isobaric heat-
capacity, cp, values derived from the two different virial equations of state
are shown in Figs. 13 and 14. The cv and cp values derived from the two
different virial equations of state have the largest discrepancies at satura-
tion. This shows the importance of accurate third virial coefficients in cal-
culating the thermodynamic properties near saturation.

0.6

0.7

0.8

0.9

1.0

200 250 300 350
T, K

c v,
 k

J . 
kg

-1
 . 

K
-1

saturation curve

ideal gas

0.1

0.2

0.5

1 MPa

Fig. 13. Isochoric heat capacity, cv , along different isobars. Thick solid line, viri-
al equation of Eqs.(7)–(12); dashed line, virial equation having only second virial
coefficient in Eq. (1).
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Fig. 14. Isobaric heat capacity, cp , along different isobars. Thick solid line, viri-
al equation of Eqs.(7)–(12); dashed line, virial equation having only second virial
coefficient in Eq. (1).

6. CONCLUSION

We measured precise PVT properties of R143a in the gaseous phase
including near saturation with a magnetic suspension densimeter. We suc-
cessfully obtained 102 PVT-properties with an uncertainty of ±(0.03%
+ 0.005 kg · m−3). Based on the precise measurements obtained near
saturation, the parameters of the Stockmayer potential model with a new
parameter proposed by Kojima were determined. Then, a new virial equa-
tion of state using the second and third virial coefficients deduced from
the Stockmayer potential model was developed which enabled not only
representation of the measurements including density, speed of sound, and
specific heat capacity, but also prediction of properties in the range where
no experimental data are reported.

By using the Stockmayer potential model and the reliable experimen-
tal PVT-property data measured in this study, the second and third virial
coefficients were determined for R143a. We believe that the virial equation
of state developed in this study can provide a reasonable thermodynamic
surface for the gaseous phase including near saturation and at lower tem-
peratures. Finally, we would like to strongly point out that the third virial
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coefficient has a great influence on the thermodynamic properties near sat-
uration in the gaseous phase.
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